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Key Questions

ÅWhat does the bound state light-front 
wavefunction look like beyond valence Fock
sector
ïWhat does positroniumlook like?

ïThe probability of finding a photon in it?

ÅHow to solve for the bound state light-front 
wavefunction in an ab initio approach in 
Hamiltonian formalism
ïTruncations, renormalization, divergences?

ÅIƻǿ ŦŀǊ Ŏŀƴ ǿŜ ƎƻΧ
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Outline

ÅIntrodction to Basis Light-Front Quantization (BLFQ)

ÅElectron

ïRenormalization in BLFQ

ÅPositronium

ïEmbedding in BLFQ
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Basis Light-front Quantization

ÅBased on quantum field theory

ÅFor both first-principles and effective theory

ÅNon-perturbative

ÅHamiltonian formalism

ÅLight-front dynamics
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Basis Light-front Quantization

Å Solve quantum field theory through

eigenvalue problem of light-front Hamiltonian

- ὖ : light-front Hamiltonian

- ȿἃ‍ : light-front amplitude for mass eigenstates

- ὖ : eigenvalue (light-front energy) for eigenstate

Å Evaluate observables for eigenstate
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General Procedure for BLFQ

1. Derive LF-Hamiltonian ὖ from Lagrangian

2. Construct basis states 

3. Calculate Hamiltonian matrix elements

4. Diagonalize (solve                       ) and 
obtain its eigenspectrum

5. Evaluate observables
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Example: Obtain LF QED Hamiltonian

ÅQED Lagrangian

ÅDerived Light-front Hamiltonian 
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Fock-sector expansion + 2D Harmonic Oscillator + 1D Planewave



Basis Construction

ÅExample: single physical electron in QED

1. Fock-space expansion

e.g.

2. For each Fockparticle: 
Åtransverse: 2D-HO basis (                ), labeled by n,m quantum number 

(HO basis parameter                    ) 

Ålongitudinal: plane-wave basis, labeled by k

e.g.                        

with                            and
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eg = e Ä g

e= {ne,me,ke,l e} g = {ng,mg,kg, l g }

b = MW

F n,m(r ,j )



Set of Transverse 2D HO Modes for n=4

m=0 m=1 m=2

m=3 m=4

J.P. Vary, H. Honkanen, J. Li, P. Maris, S.J. Brodsky, A. Harindranath, 

G.F. de Teramond, P. Sternberg, E.G. Ng and C. Yang, PRC 81, 035205 (2010). 

ArXiv:0905:1411
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Basis Truncation

ki

i

å = K

ÅFocksector truncation

ÅLongitudinal periodic boundary condition
(integer or half integer ki)

2ni + |mi |+1[ ] £ Nmax

i

å

ÅάNmaxέ ǘǊǳƴŎŀǘƛƻƴ ƛƴ ǘƘŜ ǘǊŀƴǎǾŜǊǎŜ ŘƛǊŜŎǘƛƻƴǎ 
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Single Physical Electron
ÅFock-sector truncation:

Å Interaction part of the Hamiltonian

ÅGround state is identified as the physical electron 

XZ, H. Honkanen, P. Maris, J. P. Vary, S. J. Brodsky,
Phys. Letts. B737, 65 (2014) 



Renormalization

ÅIn quantum field theory, bare electron mass in 
the Hamiltonian is not the physical mass.

ÅBare electron mass is found by matching the 
physical electron mass to the experimental value
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Structure of Electron Wavefunction
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ÅIn electron, the probability of finding ἃȿὩ is almost zero.



Comparisonof GPDE(x,q2) obtainedfrom BLFQand
LightConeperturbation theory, for selectedq2. The
integralof GPDE(x,q2) over the momentumfraction
x contributesF2.
Toppanel: q2 =0, bottom panel: q2 =5MeV2.

Form factors as functions of q2 obtained from BLFQ
andLightConeperturbationtheory (StanleyJ. Brodsky,
et al.)
Top panel: Pauli form factor F2(q

2), bottom panel:
gravitomagneticform factorB(q2) =Bf +Bb

In the perturbativecalculation, UV and IR cutoffs are imposed on  the transverse momenta to match the BLFQ 
basis truncation. UV cutoff                                 , IR cutoff                                .



Positronium
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LF-QED Interaction:
+

‌ πȢσρ

(| ἃὩӶὩsector only)



Mass Renormalization

ÅEmbedding
ïMass counterterms(bare mass) should be 

evaluated on the level of single electron

ïConstruct a series of parallel single electron 
problem with matching kinematics

ïά9ƳōŜŘέ ǘƘŜ ǇƘȅǎƛŎŀƭ ŜƭŜŎǘǊƻƴ ƛƴ ǘƘŜ positronium
basis, allowing only the electron to be coupled 
with the photon: the positron being spectator

ïCountertermsare not only Fock-sector dependent 
but also basis-state dependent
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State-dependent Mass Couterterms
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ÅWith state-dependent mass counterterms
applied, the ground state binding energy 
convergence is much improved



Divergence in Longitudinal Direction

ÅThis divergence is due to violation of current 
conservation introduced by basis truncation
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Longitudinal regulator
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Å Introduce a regulator in the longitudinal direction

Å Applied to both embedded single electron system
and positroniumsystem, both the vertex interaction
and the instantaneous interaction

Å Results depend on xc, still a problem



Longitudinal Regulator

Åxc =0.1 seems reasonable since hard photons are 
not expected to be responsible for binding
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Nmax=6

NR binding value:
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Structure of Wavefunction

ÅProbability of finding positroniumin ἃȿὩӶὩFock
sector

ÅSeems that ἃȿὩӶὩ‎will eventually dominate, 
from constituent electron?
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Conclusion

ÅMass renormalization is needed when BLFQ is 
dealing with more than a single Focksector

ÅEmbedding approach with basis state-
dependent renormalization seems working

ÅMultiple divergences encountered

ÅHigher Focksector seems dominating 
positronium
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Next

ÅExplore parameter space further

ÅBetter treatment of longitudinal divergence

ÅMass spectrum

ÅObservables

ÅQCD counterpart

38




